Tom S. Bertalar

RESEARCH SOFTWARE ENGINEER · THE UNIVERSITY OF MASSACHUSETTS, LOWELL; CHEMICAL ENGINEERING

🛛 (256) 613-3760 | 🖉 Tom@TomBertalan.com | 🎢 TomSB.net | 🖸 TSBertalan | 🛅 Tom-Bertalan-00764640

Machine learning and dynamical systems researcher specialized in neural system identification and unsupervised representations. Proficient in handling high-dimensional time-series data for both offline parameter optimization and online execution.

SKILLS

Libraries, frameworks, & tools

- Python/C++
- NumPy+SciPy+Matplotlib
- Pytorch/TensorFlow/Keras
- Linux and shell scripting
- Git/Subversion
- VSCode/Eclipse+PyDev
- Scikit-Learn

Areas of Expertise and Training

- Computer vision
- Dimension reduction and representation learning
- Deep learning and ML
- Probabilistic modeling and theory
- Nonlinear dynamics of time series data
- Research presentation and dissemination
- Trainee and peer mentoring

Other Skills and Interests

- Home automation with Arduino, Raspberry Pi, and 3D printing
- Solo and orchestral violin performance
- · Windsurfing and small-boat sailing

PROFESSIONAL EXPERIENCE AND RESEARCH AREAS

University of Massachusetts

RESEARCH SOFTWARE ENGINEER

Model Predictive Control of CHO Bioreactor

- Collect targeted experimental data from a 3-liter bioreactor, characterizing dynamics and responses to control inputs.
- Train physics-based and neural-network bioreactor models to predict behavior under relevant conditions.
- Develop an optimal online model-predictive controller in Aspen DMC to maximize combined quality attributes.
- Lead weekly group meetings, targeting both academic publication and technology transfer to industry partners

Johns Hopkins University

POSTDOCTORAL FELLOW

- Time Series and PDE Analysis with Neural ODEs
 - Advanced SotA for neural DEs for time series, including CNNs for PDEs; conceived a novel loss function for Hamiltonian systems.
 - Cut RNN inference burn-in from 25 to 5 samples using manifold learning.
 - Derived custom gradients for nets with constraints; promoted theory on error scaling laws; applications in biomanufacturing.
 - Parallelized neural PDE solution sensitivity analysis using SLURM on GPU cluster.

Biophysical Experiment and Simulation

- Led a team of biophysics and ML experts in creating a suite of Python/MATLAB simulation and data processing tools.
- Created a GUI for Bayesian experimental design; mentored team members on its use and maintenance.
- Robotic Systems Development and Upgrades
 - Developed a variational autoencoder for end-to-end robotic localization.
 - Used Blender to create synthetic datasets for alternate-view synthesis.
 - Upgraded rover with IMU and RealSense, resulting in enhanced odometry for RTAB-MAP SLAM.
 - Trained a U-net on both open and custom datasets for real-time (>10hz) on-board semantic segmentation of drivable space.
 - Inferred depth and semantic segmentation in simulation, using pre-trained transformer networks.
 - Calibrated camera intrinsics for projective geometry of segmented point clouds.
 - Profiled depth/segmentation pipeline to ensure pure-GPU inference for real-time inference.

Special Projects and Innovations

- Administered lab GPU server for maximum uptime and ease of access for multiple concurrent users.
- Stood up local Llama2 inference server for various internal automation tasks via REST API over VPN.
- Wrote specifications and solicited bids for an upcoming multi-GPU training server destined for datacenter colocation.

The Massachusetts Institute of Technology

Postdoctoral Associate

- · Autonomous Vehicle Design and Pathfinding
 - Developed a model AV with firmware-level speed sensing and control commanded by checksummed bus communications.
 - Designed a jerk-minimizing path planner capable of planing up to two lane switches ahead at 47 mph.
 - Leveraged Ipopt and CppAD to push a model-predictive path follower to a latency of 67 ms in simulation.
 - Wrote wrapper APIs for using video games as robotic simulations.
 - Detected dashcam obstacles via windowed SVM.
 - Designed compute board mounting brackets in CAD for 3D printing.

Cambridge, MA 3/2018-3/2020

Lowell, MA 1/2024-Present

Baltimore, MD

3/2020-1/2024

Nonlinear dynamics in neuroscience

- Wrote object-oriented library for fine- and coarse-grained simulation of neuronal dynamics.
- Analyzed bifurcation and resonance behavior of a mammalian circadian rhythm model.
- Played a key role in acquiring a \$1.8M grant for an industry-academic partnership.

Princeton University

NSF Research Assistant

Built a rover for particle-filter SLAM with LIDAR; using Gazebo and ROS. Created a custom library for visualizing OpenCV pipelines and execution-time computation graph pruning. Simulated thousands of neurons in vectorized Numpy and MATLAB; and social agents in OpenMP-accelerated C++.

The University of Alabama

Student Research Assistant

Created a 10-node Beowulf cluster in PHP, explored CUDA for PDE acceleration, and developed a LAMP-based social network. Simulated hierarchy formation in social animals as input to wet-lab experiments. Authored a multigrid subsurface-flow solver with CUDA acceleration.

EDUCATION & TRAINING

Institutions

•	Johns Hopkins University	2020 - Present
	Postdoctoral Fellow	ChBE
•	The Massachusetts Institute of Tech	nology 2018 - 2020
	Postdoctoral Associate	ME
•	Princeton University	2012 - 2018
	NSF Research Fellow	PhD & MA, ChBE
•	The University of Alabama	2008 - 2012
	Student Research Assistant	BS ChBE; Minor in Math

Awards

- Princeton Program in Plasma Science and Technology research and academic fellowship
- National Science Foundation research fellowship
- William R. Schowalter fund for scholarly conferences
- National merit finalist scholarship
- University honors program and president's list
- + $\Phi H\Sigma$, ΩXE , and $TB\Pi$ honor societies

Teaching

- Volunteered in a recurring summer course for high-school seniors and freshmen on employing ROS, OpenCV, and CNNs for lane detection and traffic sign recognition.
- Supervised operations and measurment activities in junior Chemical & Biological Engineering practicum.
- Lectured, held office hours, and graded assignments in senior differential equations course.

SELECTED PUBLICATIONS

A longer list of publications and presentations is available upon request.

Implementation and (Inverse Modified) Error Analysis for implicitly-templated ODE nets	Under Review
Aiqing Zhu, Beibei Zhu, <u>Tom Bertalan</u> , Yifa Tang, Ioannis Kevrekidis	arXiv:2303.17824
Transformations between deep neural networks	Under Review
Tom Bertalan, Felix Dietrich, Ioannis Kevrekidis	arXiv:2007.05646
Certified Invertibility in Neural Networks via Mixed-Integer Programming	2023
Tianqi Cui, <u>Tom Bertalan</u> , George J. Pappas, Manfred Morari, Ioannis Kevrekidis, Mahyar Fazlyab	L4DC 2023 — PMLR
Learning emergent PDEs in a learned emergent space	2022
Felix Kemeth, <u>Tom Bertalan</u> , Thomas Thiem, Seungjoon Moon, Carlo Laing, Ioannis Kevrekidis	Nature Comm.
Initializing LSTM internal states via manifold learning	2021
Felix Kemeth, <u>Tom Bertalan</u> , Nikolaos Evangelou, Tianqi Cui, Saurabh Malfani, Ioannis Kevrekidis	Chaos
Local conformal autoencoder for standardized data coordinates Erez Peterfreund, Ofir Lindenbaum, Felix Dietrich, <u>Tom Bertalan</u> , Matan Gavish, Ioannis Kevrekidis, Ronald Coifman	2020 PNAS
On Learning Hamiltonian Systems from Data	2019
<u>Tom Bertalan</u> , Felix Dietrich, Igor Mezic, and Ioannis Kevrekidis	Chaos

Tuscaloosa, AL

9/2009-5/2012

VERSION 1F556CD

PUBLICATIONS

Machine Learning Approaches to Problem Well-Posedness <u>Tom Bertalan</u> , George Kevrekidis, Elizaveta Rebrova, Siddhartha Mishra, Yannis Kevrekidis	In Preparation
Data-driven and Physics Informed Modelling of Chinese Hamster Ovary (CHO) Cell Bioreactors Tianqi Cui, <u>Tom Bertalan</u> , Nelson Ndahiro, Pratik Khare, Michael Betenbaugh, Costas Maranas, Ioannis Kevrekidis	Under Review arXiv:2305.03257
Implementation and (Inverse Modified) Error Analysis for implicitly-templated ODE nets	Under Review
Aiqing Zhu, Beibei Zhu, <u>Tom Bertalan</u> , Yifa Tang, Ioannis Kevrekidis	arXiv:2303.17824
Transformations between deep neural networks	Under Review
<u>Tom Bertalan</u> , Felix Dietrich, Ioannis Kevrekidis	arXiv:2007.05646
Certified Invertibility in Neural Networks via Mixed-Integer Programming	2023
Tianqi Cui, <u>Tom Bertalan</u> , George J. Pappas, Manfred Morari, Ioannis Kevrekidis, Mahyar Fazlyab	L4DC 2023 — PMLR
Some of the variables, some of the parameters, some of the times, with some things known: Identification with partial information Saurabh Malani, <u>Tom Bertalan</u> , Tianqi Cui, Michael Betenbaugh, Jose L. Avalos, Ioannis Kevrekidis	2023 Comp. & Chem. Engr.
Learning effective stochastic differential equations from microscopic simulations: linking stochastic numerics to deep learning Felix Dietrich, Alexei Makeev, George Kevrekidis, Nikolaos Evangelou, <u>Tom Bertalan</u> , Sebastian Reich, Ioan- nis Kevrekidis	2023 Chaos
Learning emergent PDEs in a learned emergent space	2022
Felix Kemeth, <u>Tom Bertalan</u> , Thomas Thiem, Seungjoon Moon, Carlo Laing, Ioannis Kevrekidis	Nature Comm.
Personalized Algorithm Generation: A Case Study in Meta-Learning ODE Integrators	2022
Y. Guo, Felix Dietrich, <u>Tom Bertalan</u> , D. T. Doncevic, M. Dahmen, Ioannis Kevrekidis, Qianxiao Li	SIAM J. Sci. Comp.
Initializing LSTM internal states via manifold learning	2021
Felix Kemeth, <u>Tom Bertalan</u> , Nikolaos Evangelou, Tianqi Cui, Saurabh Malfani, Ioannis Kevrekidis	Chaos
Development of closures for coarse-scale modeling of multiphase and free surface flows using machine learning Cristina Linares, <u>Tom Bertalan</u> , Eleni Koronaki, Jicai Lu, Gretar Tryggvason, Ioannis Kevrekidis	2021 APS Bulletin
Global and local reduced models for interacting, heterogeneous agents	2021
Thomas Thiem, Felix Kemeth, <u>Tom Bertalan</u> , Carlo Liang, Ioannis Kevrekidis	Chaos
Local conformal autoencoder for standardized data coordinates Erez Peterfreund, Ofir Lindenbaum, Felix Dietrich, <u>Tom Bertalan</u> , Matan Gavish, Ioannis Kevrekidis, Ronald Coifman	2020 PNAS
Emergent spaces for coupled oscillators	2020
Thomas Thiem, Mahdi Kooshkbaghi, <u>Tom Bertalan,</u> Carol Laing, Ioannis Kevrekidis	Front. in Comp. Neuro.
On Learning Hamiltonian Systems from Data	2019
<u>Tom Bertalan</u> , Felix Dietrich, Igor Mezic, and Ioannis Kevrekidis	Chaos
An Emergent Space for Distributed Data with Hidden Internal Order through Manifold Learning Felix Kemeth, Sindre Haugland, Felix Dietrich, <u>Tom Bertalan</u> , Kevin Höhlein, Qianxiao Li, Erik Bollt, Ronen Talmon, Katharina Krischer, and Ioannis Kevrekidis	2017 IEEE Access
Coarse-grained descriptions of dynamics for networks with both intrinsic and structural het- erogeneities <u>Tom Bertalan</u> , Yan Wu, Carlo Laing, C. William Gear, and Ioannis Kevrekidis.	2017 Front. in Comp. Neuro.
Dimension reduction in heterogeneous neural networks: Generalized Polynomial Chaos (gPC) and ANalysis-Of-VAriance (ANOVA) Minseok Choi, <u>Tom Bertalan</u> , Carlo Laing, and Ioannis Kevrekidis.	2016 Euro. Phys. J., Special Topics
OpenMG: a new multigrid implementation in Python	2014
<u>Tom Bertalan</u> , Akand Islam, Roger Sidje, and Eric Carlson	Num. Lin. Alg. with App.

PRESENTATIONS_____

Certified Invertibility in Neural Networks via Mixed-Integer Programming	2023
Tianqi Cui, <u>Tom Bertalan</u> , George J. Pappas, Manfred Morari, Ioannis Kevrekidis, Mahyar Fazlyab	Learning for Dyn. Sys.
Coarse-grained and emergent distributed-parameter systems from data	2021
Hassan Arbabi, Felix Kemeth, <u>Tom Bertalan</u> , Ioannis Kevrekidis	American Control Conf.
Data-driven model reduction and discovery	2020
Thomas Thiem, <u>Tom Bertalan</u> , Felix Kemeth, Yorgos Psarellis, Ioannis Kevrekidis	AIChE
Dynamical-systems-guided learning of PDEs from data	2020
Hassan Arbabi, <u>Tom Bertalan</u> , Anthony Roberts, Ioannis Kevrekidis	AIChE
On the data-driven discovery and calibration of closures Seungjoon Lee, Yorgos Psarellis, Constantinos Siettos, <u>Tom Bertalan</u> ,Daniel Amchin, Tapomoy Bhat- tacharjee, Sujit Datta, Ioannis Kevrekidis	2020 AIChE
Connections between residual networks and explicit numerical integrators, and applications to identification of noninvertible dynamical systems	2020
Tianqi Cui, <u>Tom Bertalan</u> , Yorgos Psarellis, Ioannis Kevrekidis	AIChE
Neural network approach to reduced order modeling of multiphase flows	2020
Cristina Linares, <u>Tom Bertalan</u> , Seungjoon Lee, Jicai Lu, Gretar Tryggvason, Ioannis Kevrekidis	APS Div. of Fluid Dyn.
PDE+PINN: Learning and Solving a PDE at the Same Time	2020
Tom Bertalan, Felix Kemeth, Tianqi Cui, Ioannis Kevrekidis	AIChE
Learning Partial Differential Equations from Discrete Space Time Data: Convolutional and Re- current Networks, and Their Relations to Traditional Numerical Methods Tom Bertalan, Felix Dietrich, Thomas Thiem, Rob Farber, Ioannis Kevrekidis, Anthony Roberts	2019 AIChE
Recurrent Neural Networks, Numerical Integrators and Nonlinear System Identification	2018
<u>Tom Bertalan</u> , Rob Farber, Thomas Thiem, Felix Dietrich, Ioannis Kevrekidis	AIChE
Coarse-Scale PDEs from Microscopic Observations Via Machine Learning	2019
Seungjoon Lee, Mahdi Kooshkbaghi, Constantinos Siettos, <u>Tom Bertalan</u> , and Ioannis Kevrekidis	AIChE
When Have Two Networks Learned the Same Task? Data-Driven Transformations between Sys- tem Representations Tom Bertalan, Felix Dietrich, Thomas Thiem, Ioannis Kevrekidis	2019 AIChE
Coarse modeling of circadian rhythms in heterogeneous neural networks	3017; 2016
<u>Tom Bertalan</u> , C. William Gear, Yannis G. Kevrekidis, Michael Henson, Erik Herzog, and Carlo Laing	Dyn. Days 2017; AlChE
Coarse-graining of heterogeneous neural dynamics	2015
<u>Tom Bertalan</u> , Minseok Choi, Carlo Laing, Ioannis Kevrekidis	AIChE
Heterogeneity and reduction for complex network dynamics	2014
Ioannis Kevrekidis, Alexander Holiday, <u>Tom Bertalan</u> , and Carlo Laing	AIChE
Polynomial representations of populations with multiple heterogeneities	2014
<u>Tom Bertalan</u> , Yan Wu, Brianna Hnath, and Yannis Kevrekidis	Princeton Grad. Student Symp.
Coarse-graining Network Dynamics	2013
Alexander Holiday and <u>Tom Bertalan</u>	Network Front.
nSpyres: an open-source, Python-based framework for simulation of flow through porous me- dia Eric Carlson, Akand Islam, Francis Dumkwu, and <u>Tom Bertalan</u>	2012 Interpore 2012
OpenMG: a new multigrid implementation in Python	2012
Tom Bertalan, Akand Islam, Roger Sidje, and Eric Carlson	Proc. 11 th Python in Sci. Conf.
ESIM: a framework for simulation of dominance hierarchy formation in small animal groups	2012
Tom Bertalan and Ryan Earley	UA Hon. Undergr. Res. Conf.
An open-source computing cluster for virtual experiments with variable parameters	2011
<u>Tom Bertalan</u> and Eric Carlson	UA Hon. Undergr. Res. Conf.